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Túlio O. Carvalho1 and César R. de Oliveira2,3

Received July 31, 2006; accepted February 7, 2007
Published Online: May 2, 2007

We consider convex combinations of finite-valued almost periodic sequences (mainly
substitution sequences) and put them as potentials of one-dimensional tight-binding
models. We prove that these sequences are almost periodic. We call such combinations
hybrid quasicrystals and these studies are related to the minimality, under the shift on
both coordinates, of the product space of the respective (minimal) hulls. We observe a
rich variety of behaviors on the quantum dynamical transport ranging from localization
to transport.
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1. INTRODUCTION

The study of transport in one-dimensional aperiodic lattices may be mod-
eled by the nearest-neighbors tight-binding Hamiltonian (Schrödinger operator)
in l2(Z)

(Hψ)n = ψn+1 + ψn−1 + λVnψn, (1)

with λ > 0 and potentials V = (Vn)n∈Z generated by aperiodic sequences. In many
circumstances the potentials are real-valued functions of sequences on a finite set
A, called alphabet; these are models of one-dimensional quasicrystals. (2)
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2 Departamento de Matemática–UFSCar, São Carlos, SP 13560-970, Brazil.
3 CRdO thanks the partial support by CNPq.

1221

0022-4715/07/0600-1221/0 C© 2007 Springer Science+Business Media, LLC



1222 Carvalho and de Oliveira

Quantum interferences may lead to localization of the solutions of the corre-
sponding Schrödinger equation

i
∂

∂t
ψ(t) = Hψ(t),

as in case of (random) Bernoulli potentials, (12) but also to ballistic motion, mainly
related to periodic potentials.

Among the characterizations of localization and transport we single out the
second moment of the position operator

m2(T ) :=
∞∑

n=−∞
|n − n0|2|ψn(T )|2, (2)

usually with initial condition concentrated on a single site n0. For a large class
of potentials the moment m2(T ) ≤ CT 2 (at least for T > 1) and if m2(T ) ≈ CT 2

holds we have the definition of ballistic motion. Localization is characterized
by a bounded function m2(T ) ≤ C , ∀T ; lack of localization is usually referred
to as delocalization or transport. Half the way between these extremes are the
anomalous transport, that is,

m2(T ) ≈ CT β with 0 < β < 2,

which are usually accompanied by singular continuous spectrum of the operator
H . Important examples of such anomalous behavior are the above cited models
of quasicrystals, among which the most prominent are the (primitive) substitu-
tion sequences, (2,18) for instance, Fibonacci, Thue-Morse and Period Doubling
sequences. The Schrödinger operators whose potentials are generated by these
sequences have singular continuous spectrum of zero Lebesgue measure (see ref.
[8] and references therein).

A widespread spectral point of view makes the association of singular con-
tinuous spectrum with anomalous transport, absolutely continuous to ballistic
motion and point spectrum of the Schrödinger operator with localization, even
though there are known exceptions, namely of operators with purely point spectra
showing transport. Even rank one perturbation (a very localized one) can exchange
point and singular continuous spectra, (20) and the latter surely implies transport
(any continuous spectrum does, as a consequence of RAGE theorem). What about
unlocalized perturbations, i.e., those spread over the whole lattice? Certainly this
becomes a too huge class of problems to be reasonably dealt with.

However, there is a special type of such perturbations we think it is worth
considering and may be of some (experimental) relevance in the near future. A
particular model of quasicrystal, as a substitution sequence, is an almost peri-
odic sequence that grows up from a seed (i.e., an initial condition) and a spe-
cific “growing rule.” If one has control of the growing technique, one could
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grow a quasicrystal in one direction following one such rule, and in a perpen-
dicular direction following another rule. This hybridization creates a potential
which is a linear (convex) combinations of the original ones. This type of long
range perturbations of the potentials can also be considered from the theoretical
point of view, the sequence spaces are two-dimensional and have been considered
before. (21)

The potentials we shall consider are constructed as follows. Given two parent
potentials v = (vn)n∈Z, u = (un)n∈Z and 0 ≤ κ ≤ 1, the hybrid potential is

Iκ (v, u) := κv + (1 − κ)u = (κvn + (1 − κ)un)n∈Z
.

Experience with random potentials indicates that if one of them is random then
this characteristic will prevail with respect to localization. If both potentials are
periodic, then the resulting one will also be periodic with period given by their
least common multiple. So, in these extreme cases again, localization and ballis-
tic motion, respectively, are persistent. Note that the number of values a hybrid
potential assumes is in general larger than the number of values of each of its
components; e.g., if both v, u take values in {0, 1}, then Iκ (v, u) will generally
assume all values in {0, κ, (1 − κ), 1}.

This work is an initial study on this proposal, and we will limit ourselves to
almost periodic potentials taking a finite number of values (notably, substitution
sequences). We present theoretical results on minimality, and data for the moment
m2(T ) from numerical time evolution simulations.

Section 2 review briefly some aspects of finitely valued sequences. In Sec. 3
we address the question about minimality of the product of minimal sets, giving
a sufficient condition for it. In Sec. 4 we report some outcomes of numerical
simulations of the moment m2(T ) for the hybrid potentials, closing in the final
section with our concluding remarks.

2. SUMMARY ON SEQUENCES AND SUBSTITUTIONS

We denote by A∗ (resp. AZ) the sets of finite (resp. bi-infinite) words with
letters in the finite set A (called alphabet), which can be considered a subset of
the real numbers. The metric on AZ is

d(a, b) =
{

0, if ∀n ∈ Z, an = bn
1
2n , where n = min{| j | : a j �= b j }.

A dynamics on this set is the (left) shift (σ (v))n = vn+1. Recall that a sequence
v ∈ AZ is almost periodic iff its hull (the bar indicates the closure of the set)

�(v) := {σ j (v) : j ∈ Z}
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is minimal, that is, the hull of any sequence in �(v) coincides with �(v). The set
O(v) = {σ j (v) : j ∈ Z} is the orbit of v. By Tychonov theorem AZ is compact
and so is every hull as above.

The minimality is an important property of the hull of (primitive) substitution
sequences (see ahead), as well as the existence of a unique ergodic measure, and up
to now rigorous and numerical studies have revealed just one dynamical behavior
in each minimal component (usually rigorous results are restricted to generic or
full measure sets). So, as a first step in the study of such new class of systems, in
this work we address the problem of minimality of the hull of hybrid sequences
in case their respective parent potentials are almost periodic. Setting a product
metric, the dynamics, with respect to which one considers minimality, is on the
product space of the hulls of the two parent potentials, and is generated by the
(natural) product shift

σ (u, v)n = (un+1, vn+1). (3)

We use the same notation for the shift in two and one-dimensional sequences.
In order to investigate the minimality of the product spaces it turns out to be
important hybridizing not only of v and u, but also of elements of their one-
dimensional orbits; namely, to consider Iκ (v, σ j (u)), for each j ∈ Z.

A finite word w is indexed a0a1 . . . a|w|−1, ai ∈ A, where |w| denotes the
length of w. Given a set of infinite words X , the language of X , L(X ), is the set
of finite words occurring in some w ∈ X .

Let us describe some substitution rules which generate sequences of interest
for this work; details can be found in refs. [2, 18]. Given a finite alphabet A a
substitution is a map ξ : A → A∗. Its iterations are defined by concatenation, that
is, ξ (abc) := ξ (a)ξ (b)ξ (c), ξ n+1(a) := ξ (ξ n(a)), n ≥ 1. A substitution is primitive
if there exists k ∈ N so that for every a ∈ A the word ξ k(a) contains all letters of
A. All substitutions in this work are primitive (see ref. [16] for some nonprimitive
substitutions as potentials of Schrödinger operators).

A fixed point of a substitution is a sequence u ∈ AN such that ξ (u) = u. In
order to exist, it must be the case that u0 is the first letter of ξ (u0). It is known that
if ξ is primitive, there is some l such that ξ l has a fixed point, (18) so it is no loss to
assume ξ has a fixed point.

Fibonacci (FCC), Period Doubling (PD) and Thue-Morse (TM) substitution
sequences are constructed with an alphabet of two letters {a, b} through the
rules

a �→ ab, b �→ a (Fcc), a �→ ab, b �→ ba (TM),

a �→ ab, b �→ aa (PD).

Beginning with a (the seed) and applying successively the substitution rules (the
growing rules), aperiodic sequences are obtained; e.g., the Thue-Morse sequence
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is given by

abbabaabbaababba · · ·
The paper folding (PF) sequence can be obtained with an alphabet of four

letters {1, 2, 3, 4}, the substitution

1 �→ 12, 2 �→ 32, 3 �→ 14, 4 �→ 34,

(the seed is 1) and then applying the literal map 1, 2 �→ a and 3, 4 �→ b.
We then use these substitution sequences to define our potentials V ; we

take Vn = −1 if the n-th letter of the sequence is a and Vn = 1 in case it is b.
There are standard ways of extending such substitution potentials for negative
values of n. (5,14) We do not have to deal with this issue in numerical simulations
because we take a large finite sample of N sites, using the initial wavefunction con-
centrated on position N/2, i.e., ψn(t = 0) = δN/2,n , n ≥ 0. This is the procedure
we use to construct almost periodic substitution potentials V .

It is known that the spectrum of the operator (1) with finite-valued aperiodic
and almost periodic potentials has no absolutely continuous component (primi-
tive substitutions are included) (14,15); although from a rigorous point of view the
lack/presence of eigenvalues in cases of primitive substitution sequences is an open
question, as already remarked, no strong evidence of the presence of eigenvalues
and localization was found yet.

Given a substitution ξ over a finite alphabet A, denote by Mξ its substitution
matrix, i.e., Mξ = aw,w′ , where aw,w′ is the number of occurrences of the letter w′

in ξ (w). ξ is a Pisot substitution if the dominant eigenvalue of Mξ has modulus
greater than one, while all the other eigenvalues have absolute values strictly less
than one. For example, the matrix substitution for TM and FCC substitution are

M TM =
(

1 1
1 1

)
and M Fcc =

(
1 1
1 0

)
,

whose dominant eigenvalues are 2 and (1 + √
5)/2, respectively. The dominant

eigenvalue of the PD substitution is 2, but it is not Pisot, since the other eigenvalue
is −1. PF is not Pisot either.

3. MINIMALITY OF HYBRID HULLS

Let v and u denote almost periodic sequences and �(v), �(u) be their re-
spective hulls. In the product space �(v) × �(u) we have the shift defined by
σ (x, y) = (σ (x), σ (y)). This dynamics does not imply that the product space is
minimal if the parent hulls �(v) and �(u) are minimal. The orbit of a point (x, y) is
O(x, y) = {σ n(x, y) : n ∈ Z}. For each κ , there is a correspondence between ele-
ments of this product space and hybrid sequences Iκ (vl, ul ), vl ∈ �(v), ul ∈ �(u).
The potential is a real-valued function on one such sequence. It is of interest to
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know whether the potential is almost-periodic. We present in this section some
results concerning minimality on the product space of minimal subsets of AZ.

Given ε > 0, the subset of integer numbers

{n ∈ Z : d(σ n(x), x) < ε}
is called the set of ε-periods of x ∈ X ⊂ AZ. When X is minimal, the above set is
syndetic, i.e., there is an integer m such that any interval [n, n + m] ⊂ Z intersects
it. Recall that x is almost periodic iff that set is syndetic for all ε > 0; in this case
of finite-valued sequences this is equivalent to the fact that every finite word in x
appears with bounded gaps.

There is an alternative view of periods in terms of words, or equivalently the
cylinder sets generated by them. If a ∈ AZ, let Ra(w) denote the set of integers n
such that

anan+1 . . . an+|w|−1 = w.

Thus Ra(w) is the set of integers n for which w is a prefix of σ na. It can be
ordered

Ra(w) = {αi , i ∈ Z : αi < αi+1}
for some arbitrary choice of α0. The minimality of X is equivalent to the fact
that for each finite word w that occurs in X there is an integer m(w) so that
αk+1 − αk < m(w), ∀k (i.e., w occurs with bounded gaps). Similarly, for b ∈ Y ⊂
AZ, Y minimal, let Rb(u) = {β j , j ∈ Z : β j < β j+1} (the notation should be
clear).

In the product space X × Y we seek a description of the possible minimal
sets under the shift and metric

D((a, b), (c, d)) := dX (a, c) + dY (b, d), a, c ∈ X, b, d ∈ Y.

The existence of these minimal sets is a consequence of X × Y compactness and
Zorn’s Lemma.

Picture X × Y as the orbit closure of the union of (a, σ n(b)), n ∈ Z. If we
represent the sequence a along a horizontal lattice (·, 0) ⊂ Z

2 and σ r (b) along
vertical lattices, each attached to the corresponding horizontal position (r, 0), the
orbit (a, σ r b) is the left translation of the horizontal line (·, 0). Analogously the
orbit of (σ k(a), b) may be followed by pulling horizontally the line at (·, k).

We begin to address the question about minimality of O(a, b) by asking if, as
one sits at different positions along the horizontal axis, one sees the same pair of
finite words u, w upwards and to the right respectively, infinitely often. While this
certainly happens at each βn and αn alternatively upwards and to the right, one is
interested in these words appearing at the same time and with bounded gaps.
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Proposition 1. If X ⊂ AZ and Y ⊂ BZ are minimal sets, then X × Y decom-
poses into finitely many minimal sets.

Proof: Suppose on the contrary that we had infinitely many invariant sets Mi .
Choose a point in each Mi and an open set Ui containing it but with no intersection
with M j , j > i . Complete this cover with Vi = Mi \ Ui (recall that Ui is also
closed since we are dealing with product of cylinders). From the cover of Ui and
Vi ’s we cannot extract a finite subcover, but X × Y is compact. �

Theorem 1.17 in ref. [11] yields a point whose orbit closure is a minimal
set. We can show that this holds for every point in X × Y , whenever X and Y are
minimal sets.

Proposition 2. Suppose X, Y ⊂ AZ are minimal. Given a point z ∈ X × Y , its
orbit closure O(z) is minimal.

Proof: Pick a point (a, σ j b) from a minimal set M ⊂ X × Y . Then, for any
ε > 0, there exists a sequence (n p)p∈N, n p ↗ ∞, |n p+1 − n p| bounded such that

D((a, σ j (b)), σ n p (a, σ j (b))) < ε.

Now pick a point (σ ka, σ lb) ∈ X × Y . For any n p > h = max{|l − j |, |k|}

D(σ k(a, σ l−k(b)), σ n p+k(a, σ l−k(b))) = dX (σ ka, σ n p+ka)

+ dY (σ lb, σ n p+lb) ≤ 2kdX (a, σ n p a)

+ 2|l− j |dY (σ j b, σ n p+ j b) < 2h+1ε

and this can be made arbitrarily small. Since any z ∈ X × Y belongs to the closure
of the orbit of some (σ ka, σ lb), the proposition is proved. �

This proves the assertion in the abstract

Corollary 1. If X, Y ⊂ AZ are minimal sets, then a sequence z ∈ X × Y is
almost periodic, as well as any sequence obtained from it by some real-valued
function defined on X × Y .

In what follows, unless stated on the contrary, we assume that X and Y are
minimal sets. Now the question is to characterize when the product X × Y is
minimal.

Proposition 3. Suppose there exists a sequence nk ↗ ∞ so that σ nk a → a∗ and
{σ nk+lb : nk}, for some l fixed, is dense in Y . Then X × Y is minimal.
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Proof: Our hypothesis asserts that (a∗, Y ) is contained in the orbit closure
O(a, σ l (b)). Due to Proposition 2, it is enough to show that there is a dense
orbit in X × Y . Given (x, y) ∈ X × Y and ε > 0

D((σ na, σ n+lb), (x, y))≤ D((σ na, σ n+l (b)), (σ j (a∗), y))+D((σ j (a∗), y), (x, y)).

Since X is minimal, the second term may be made less than ε/3, and this fixes j .
Now

D((σ na, σ n+l (b)), (σ j (a∗), y)) = d(σ n(a), σ j (a∗)) + d(σ n+l(b), y).

We note that along the subsequence n = nk + j the first term is less than ε/3
for every nk sufficiently large. The set of points σ nk+lb, nk > N , is dense in
Y , N a fixed arbitrary integer. Therefore, if z = σ− j y, there exists nk so that
d(σ nk+lb, z) < ε′. Choosing ε′ small enough yields d(σ nk+( j+l)b, y) < ε/3, for
some nk > N . �

Therefore, if X × Y is not minimal, then for every convergent sequence
σ nk (a) → a∗ one has that σ nk+l(b) is not dense, for any l.

We know that the dynamics of a map on the torus T
d : T (θ ) = θ + α (mod 1)

is ergodic when α is rationally independent. By coding this dynamics with a
partition along each circle, we get a symbolic sequence which is semi-conjugate
to the original dynamics. (1) This is an example of a product of two sequences
spaces which is minimal. We say that (w, u) is a prefix of (a, b) if w is a prefix of
a and u is a prefix of b. It is easy to characterize lack of minimality in terms of the
language of X × Y . Indeed, if L(a, b) denote the set of words of (a, b) ∈ X × Y ,
we haveL(a, b) ⊂ L(a) × L(b). Hence, if X × Y is not minimal, for each invariant
set M ⊂ X × Y , there are words r ∈ L(a) and s ∈ L(b) such that (r, s) does not
occur in M .

Remark 1. If a is an almost periodic sequence, note thatL(a) = L(�(a)).

By hull of a substitution we understand the hull of any of its fixed points. For
primitive substitution sequences we get a simple criterion for minimality of the
product of their hulls. Recall that this case is our choice of prototypes of hybrid
quasicrystals. The argument comes from the proof of a result Hansel in ref. [13]
related to Cobham’s Theorem (see also refs. [7, 10]). Recall that two positive
numbers θ and ϑ are multiplicatively independent if the equation θ l = ϑk holds
only for l = k = 0.

Theorem 1. Let ξ and ζ be two primitive substitutions on the (finite) alphabets
A and B, respectively, and denote by X and Y their respective hulls under the
shift. If Mξ and Mζ have multiplicatively independent dominant eigenvalues, then
X × Y is minimal.
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Proof: Let a = ξ (a) = (a j ) j∈Z and b = ζ (b) = (b j ) j∈Z be fixed points of the
corresponding substitutions and M = O(a, b). If X × Y is not minimal, then
M �= X × Y and there is a finite word (r, s) in X × Y that does not occur in M .
Thus, for any r0, r1, s0, s1, |r0| = |s0|, (r0rr1, s0ss1) does not occur in the orbit of
(a, b) either.

Since the substitutions are primitive, there is a k so that for all n ≥ k the
words ξ n(w), w ∈ A, contain r , and ζ n(u), u ∈ B, contain s. We choose r0 and
r1 so that ξ n(w) = r0rr1 above. Then s0 and s1 are chosen so that ζ n(u) contains
s0ss1. We conclude that for any pair (w, u) ∈ A × B there is some n0 (which may
be taken big) so that

(ξ n0 (w), ζ n0 (u)) is not a prefix of σ k(a, σ−lb) for every k and some l. (4)

Let θ and ϑ be the dominant eigenvalues of Mξ and Mζ respectively.
Consider the subsets of N

E(X ) = {|ξ (a0a1 . . . am)|, m > 0},
E(Y ) = {|ζ (b0b1 . . . bm)|, m > 0}.

E(X ) contains some of the positions where the words ξ j (w), ∀ j,∀w ∈ A, occur
in a. By Lemma 2 in ref. [13], for large enough m, these positions are the integer
numbers closest to aθ pj + b for some integer p > 0, and real a > 0, b. The same
holds for E(Y ), in that it contains integers closest to a′ϑq j + b′, for some integer
q > 0, and real a′ > 0, b′. But θ p and ϑq are multiplicatively independent, so the
set of ratios

aθ pj + b

a′ϑq j + b′

is dense in R
+. Therefore, it must be the case that the intersections E(X ) ∩ E(Y )

and E(X ) ∩ {E(Y ) − l}, for any l, are not empty. This contradicts (4). �

Remark 2. In the case of Pisot substitutions, the proof is simpler in that the E(X )
will contain integer numbers close to θ pj , while E(Y ) contains integers close to,

ϑq j , for integer j > 0. If θ and ϑ are multiplicatively independent, the same
argument follows.

Corollary 2. If �TM, �Fcc and �PD are the hulls of the indicated substitution
sequences, then the products �TM × �Fcc and �PD × �Fcc are minimal.

One can investigate whether some product spaces generated by constant
length substitutions are not minimal in a case by case analysis. For instance if
ξ denotes the Thue-Morse substitution and η is the period-doubling substitution,
then contained in the above described X × Y , one has the following subset �. Let
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B denote the four letter alphabet: {(a, a), (a, b), (b, a), (b, b)}. On B we define the
substitution

ζ (x, y) := (ξ (x), η(y)).

Explicitly, ζ (a, a) = (ab, ab) = (a, a)(b, b), ζ (a, b) = (ab, aa) = (a, a)(b, a),
ζ (b, a) = (ba, ab) = (b, a)(a, b) and ζ (b, b) = (ba, aa) = (b, a)(a, a). This sub-
stitution ζ can be shown to be primitive with two fixed points. The fixed points
belong to the same hull, since the languages of the fixed points of a primitive sub-
stitution coincide. In a four letter alphabet, Berstel has considered a substitution
isomorphic to ζ when constructing square-free words. (3) Let u = abbabaab · · ·
be one fixed point of the Thue-Morse substitution and w = abaaabab · · · be the
aperiodic fixed point of the period-doubling substitution. We can see that � is
an invariant minimal subset strictly contained in X × Y by noticing that, while
(abba, baaa) is a prefix of (u, σw), it does not occur in any point of the orbit
σ j (u, w).

Similarly, we have analyzed the substitutions defined in an eight letter alphabet
by the product of period doubling and Rudin-Shapiro, and the product of period
doubling and paper-folding. These substitutions are semi-primitive, in the sense
of ref. [5], see also ref. [17] where semi-primitiveness is shown for Rudin-Shapiro
substitution. There is a sub-alphabet, with six letters, in which they are primitive.
These substitutions also have two fixed points. The same argument on the location
of the letter b in the period doubling substitution leads to more than one invariant
set in X × Y .

4. NUMERICS OF THE MOMENT

In this section we report some numerical simulations of the moment m2(T )
as a function of time T for some hybrid quasicrystals. Basis sets were usually of
size 214, and the time evolution was done by integrating the Schrödinger equation
using a sympletic integrator, as described in ref. [6]. The emphasis will be on
hybrid substitution quasicrystals. It is expected that different minimal sets present
different behavior of m2(T ) and, with respect to numerics, this is the working
setting accepted here.

In these numerical experiments we have mostly fixed κ = 1/2, but exceptions
are explicitly mentioned. We also set λ = 1 (preliminary results indicate that the
qualitative behavior is independent of λ �= 0). The guide to the simulations was
based on two properties used in Theorem 1, that is, the multiplicatively independent
dominant eigenvalues of their substitution matrices.

First consider the hybridizing of TM and FCC. The results are summarized in
Figure 1. Different elements of the product of the hulls are obtained by keeping
one sequence fixed and shifting the other before the combination. Although both
sequences individually generate transport (for TM see the dashed line in Figure 2),
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Fig. 1. The moment as function of time (log − log scale) for the combination of TM and FCC substitution
sequences. The sequence FCC was kept fixed, while TM was shifted by 0, 1, . . . , 5 in order to explore
different elements of the product of their hulls.

when combined we have got only one behavior, in accordance with Theorem 1
and Corollary 2, since the hybrid hull is minimal in this case. This gives an
example of numerical dynamical localization in an almost periodic sequence. As
a complement to such simulations we have also considered κ = 0.2 and 0.8, and
localization was always found; again the minimality seems to be the important
property.

Another possibility we have investigated is when the two involved substitu-
tions have multiplicative dependent dominant eigenvalues. The extreme case is for
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5

10864

Fig. 2. The moment as function of time (log − log scale) for the combination of TM with itself shifted.
The dashed line is for the original TM (no shift at all).
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equal eigenvalues and we have selected this situation by hybridizing a substitution
with shifts of itself. Figure 2 presents the results of these simulations for TM
sequence; transport was found in all cases, although with different exponents β,
indicating the presence of more than one minimal component in the product of the
hulls; so there are different hybrid quasicrystals in this case. In Figure 2 the dashed
line is for the original TM sequence. We have noted three distinct behaviors, with
the dashed line as a border between them: for some shift values the moment fol-
lows the dashed line (β ≈ βTM = 1.8), others present a range of 0 < β < βTM

values, while others with near ballistic behavior (i.e., β > 1.9); that is, if β > βTM

then it is near the maximum possible value. We add that for the combination of
FCC with itself similar results were obtained (not shown), that is, transport prevails
and different exponent values of β were found; however, without a case near the
ballistic motion.

The same procedure was applied to the PD substitution. If no shift is ap-
plied to the sequences, then the original sequence is obtained and it cannot be
considered a hybrid quasicrystal, although it is embedded in the product space.
Except for this case, where βPD ≈ 1.78, all other simulations clearly indicate a
motion near the ballistic one (no figure is shown). It appears that the self-product
of period-doubling substitution contains only two minimal components. We have
also combined almost periodic substitution sequences with periodic ones (with
periods up to 32), and quite distinct behaviors were found. A periodic sequence is
also almost periodic and its hull has finitely many elements (as many as its period).
We have hybridized PD, TM, PF and FCC with periodic sequences and, depending
on the choice of the period, for some cases we have found transport, with different
values of β, but in some other periods we got localization. Figure 3 shows some

12

10

8

6

4

10864

Fig. 3. The moment as function of time (log − log scale) for the combination of PF with periodic
sequences. The periods were 4 (dashed), 16 (line), 7 and 10 (localization).
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instances of PF combined with periodic sequences. Such long range perturbations
have shown a rich range of possibilities.

5. CONCLUSIONS

In this work we considered hybrid quasicrystals, defined by the convex com-
bination two parent finitely valued almost periodic sequences, as new models of
one-dimensional quasicrystals. Hybridization of substitution sequences was given
special attention.

We investigated in some generality the minimality of product spaces X × Y ,
when both X and Y are minimal, and Section 3 presented a sufficient condition for
primitive substitutions, which is the multiplicative independence of the eigenvalues
of their substitution matrices. Minimality is well known when the metric on the
sequence space is given by the sup-norm, (19) but requires extra work in the setting
of finitely valued sequences.

Some hybrid potentials were inserted into Schrödinger equation and the
time evolution of concentrated initial conditions numerically investigated; the
interest was in localization and transport in such structures. In order to clas-
sify our numerical results we have adopted the pragmatic position that ele-
ments in the same minimal set should generate similar time evolutions. This
was confirmed in cases our analytical results proved minimality for the prod-
uct of minimal hulls, and suggested the presence of more than one mini-
mal component in other cases. The figures presented in Section 4 illustrate
these behaviors. The hybridization with periodic sequences was also numerically
considered.

The numerical results suggest a rigorous investigation of localization in some
hybrid quasicrystals. This could be accomplished by proving that the Lyapounov
exponent γ in these sequences is uniformly positive, that is, the existence of c > 0
such that γ > c > 0.

To our knowledge, this result would be relevant since minimal sequences
generated by primitive substitutions have been shown to have zero Lyapounov
exponent by the following reasoning. Recall that L(�) denotes the language
of the minimal subshift �, and let [v] be the cylinder set defined by the
word v:

[v] ≡ {ω ∈ � : ω1 . . . ω|v| = v}

Let ν be a σ -invariant probability on (�, σ ) and n ∈ N and Ln(�) the set of words
of length n occurring in �. Define

ην(n) = min{ν([w]) : w ∈ Ln(�)}
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Boshernitzan’s condition, first considered in subshifts related to interval exchange
transformations, (4) may be written as

lim sup
n→∞

nην(n) > 0.

It is proven that the family of ergodic operators (Hω)ω∈�, when � is a mini-
mal subshift satisfying Boshernitzan’s condition, have zero Lyapounov exponent
everywhere in their spectrum, which is a Cantor set of zero Lebesgue measure. (9)

We can see that Boshernitzan’s condition does not hold in hybrid quasicrys-
tals. For an almost periodic hybrid sequence z ∈ �, the complexity pz(n), which
counts the number of words of length n in z, is at least of the order of n2, because
the complexity of each component in a hybrid sequence is at least of order n. On
the other hand, the measure of any cylinder must be inversely proportional to the
complexity, because

pz(n) min
v∈Ln (�)

ν([v]) <
∑

v∈Ln (�)

ν([v]) = 1.

for any probability ν.
This leaves one important theoretical question, to pursue the possibility of

Anderson localization in minimal hybrid quasicrystals.
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